PROCETS PROJECT
Take advantage of the use of nano-particles for production of composite coatings with superior properties compared to those of hard chromium produced by electroplating or to WC-Co produced by thermal spray.
WHY
The standard method for evaluating anti-wear of hydraulic fluids in a vane pump, is by the 100 hour ASTM or 250 hour ISO method, using a real Conestoga-built vane pump. This method takes a long time to run, and requires a lot of fluid. This makes it difficult to use the method for development or research.
WHY
High temperature tribological testing often requires the development of complex mechanical setups, that should meet rigorous standards and specific performance metrics. Thus, the development of a state-of-the-art experimental setup to study the reciprocating sliding behaviour of various bulk and coated materials at temperatures that can reach up to 1000 °C is needed, especially for the evaluation of high temperature materials for aeronautical applications.
WHY
Nowadays there is a great demand to use lightweight materials, such as aluminium alloys. One of their application possibilities is in the forming industry. In such demanding applications the use of a cutting fluid is essential to lubricate cutting edge and cool down the workpiece. Until now, to evaluate the efficiency of cutting fluids, ASTM D3233 tests on a Falex Pin-and-Vee Block tester were performed. However, this procedure was developed on hard tool steels and thus it is not appropriate for soft materials, such as aluminum alloys. In this application study and a modification of this procedure is proposed for testing of cutting fluids for soft materials and alloys.
WHY
Skin creams are commonly used to improve skin health and create a smooth, soft, and moist perception. This is achieved by altering the surface roughness, friction, and adhesion of skin surface. Despite the fact that there are many commercial creams available, there is no consistent scientific approach to determine their frictional and adhesive properties.
WHY
In everyday life we come across and use applications were wires are operated in sliding contacts. Some examples are elevators, car doors, canopies etc. In the majority of these applications, friction is critical (e.g. the wire in a canopy should slide smoothly), and after a period of tuse, wear damage of the wire can also obstruct the performance.
WHY
Wiper blades are of great importance to the safety of the driver. In reality they can operate under different speeds (various scales in the car) or under different lubrication conditions (from dry to wet with thin or thick film of water). To simulate these conditions in lab scale you need to have a versatile apparatus and you will need to use the actual components to be as close to reality as possible.
WHY
In everyday life people use hairstyling products such as waxes or gels, to improve the holding of hair and improve/change its appearance. However, in the market there are many products available, claiming to have different characteristics (e.g. strong hold, silky/smooth touch…). To define the performance of such products, tribology comes into play. In particular two parameters are important. The friction determines how easy a wax or gel can be applied, whereas the stickiness and tackiness determine their holding ability.
WHY
Air conditioner compressor fluids have to prevent friction and wear under elevated gas pressure. Standard Pin&Vee Block tests with gas 'bubbling' through the lubricant do not correlate with field behaviour, especially with CO2 as the cooling medium. Another simulation with pressurized gas is needed. We selected the Falex Block on Ring configuration, as it also recreates the line contacts and is able to work at higher speed than the Pin&Vee block machine.
Take advantage of the use of nano-particles for production of composite coatings with superior properties compared to those of hard chromium produced by electroplating or to WC-Co produced by thermal spray.